| Topic |
Synthesis of biopolymer-based nanocomposites for the removal of pharmacological contaminants: from polymer synthesis to environmental applications |
| Supervisor |
Gloria Huerta Angeles, Bsc |
| Consultant |
Skleničková Kateřina, PhD |
| Department |
Polymer Processing
|
| Description |
Releasing and accumulating contaminants, especially residues from pharmaceutical products, pose health risks to humans and have a negative and significant impact on the environment. This research focuses on the development of innovative nanocomposites derived from biomass-based monomers and biopolymers for the removal of environmental contaminants. The relationship between the structure and properties of materials for contaminant sorption is still not fully understood, which limits their effectiveness. The scope of this work will first involve the synthesis and comprehensive structural characterization of the prepared nanocomposites, including porosity, stability, mechanical and thermal properties, to explain their efficiency in terms of macromolecular structure and the presence of active sites. The second research objective will be the evaluation of nanocomposites in terms of their sorption efficiency. Sorption kinetics will be studied to identify the mechanism and rate of the sorption process. The third part of the research will focus on the biodegradation of the nanocomposites after sorption in bioreactors using effective microbial cultures (such as activated sludge). The efficiency of pollutant biodegradation within the nanocomposites will be monitored, followed by the biodegradation of the nanocomposite materials themselves. During the biodegradation process, the degradation mechanism and potential degradation products will be observed and analyzed using selected analytical techniques. This project offers an alternative to conventional methods, aiming to minimize environmental impacts and improve the efficiency of environmental technologies. |
| Universities |
|