Polymer Particles

Research People Equipment Publications



Focus of research activity

Regular spherical polymer materials, such as composite particles, combining a synthetic or a natural polymer and an inorganic component are developed in the Department. Focus of our interest shifts from the chromatographic materials to magnetic particles, which are recently much in demand. Using a magnet, such particles are easily separated from media containing various heterogeneous components. Preferably, they are used in biochemistry for isolation of enzymes, proteins and cells, as well as for removal of toxic inorganic ions from waste water. Magnetic components, such as iron oxides (magnetite, maghemite, ferrites), or perovskites, are completely encapsulated by polymers to avoid adverse interactions. Moreover, for separation purposes, polymer composite particles containing chemical functional groups are needed. We are also engaged in the development of surface-modified magnetic nanoparticles for cell labeling and 3-D scaffold for cell cultures.

Areas of interest

  • Design and characterization of magnetic oxides (magnetite, maghemite, Cu ferrite) in the form of nanoparticles with narrow size distribution. They are prepared by coprecipitation of the mixture of Fe(III)/M(II) salts in molar ratio 2/1 (M: Fe(II), Cu( II), Co(II)) by base, oxidation of magnetite to maghemite, or thermal decomposition of ferric acethylacetonate


Magnetic nanoparticles prepared by precipitation of ferric and ferrous salts.

  • Techniques of coating of magnetic nanoparticles using modified heterogeneous polymerization techniques (suspension, dispersion, emulsion, or miniemulsion polymerization), or suspension sol-gel transition method initiated thermally or by microwave irradiation. As starting materials, monomers, such as glycidyl methacrylate, 2-hydroxyethyl methacrylate, 1-vinyl-2-pyrrolidone, N,N-dimethylacrylamide, N-isopropylacrylamide, and N,N-diethylacrylamide, or natural polymers (e.g., cellulose) are used. Monomers N-isopropylacrylamide, or N,N-diethylacrylamide provide polymers with a thermal transition temperature between 20 °C and 40 °C. Below this temperature, the particles swell in water, while above it, the particles precipitate. The behavior is used for, e.g., separation of proteins, or drug delivery.


Magnetic poly(2-hydroxyethyl methacrylate) microspheres (a) and cross-section of one particle documenting the distribution of the magnetic filler (b).

  • Preparation of functionalized particles by polymerization of functional monomers is possible only under special conditions. Mostly, we modify polymer particles containing universal reactive groups, such as epoxy, hydroxy and amino groups. A specific subgroup of functionalized particles involves surface activation for immobilization of biologically active substances, such as peptides, proteins and antibodies. It requires selective techniques performed under physiological conditions, i.e., room temperature or slightly above it, the aqueous environment and pH 5-9. Activations include modified carbodiimide chemistry, reactions of cyanate and thiocyanate, thiol-ene, thiol-yne and acetylene-azide "click" chemistry. Such microspheres are designed for separation of blood-circulating tumor cells, which is important for diagnosis/prognosis of the disease.


Scheme of a magnetic polymer microsphere containing functional carboxy groups.

Human stem cells labeled with magnetic surface-modified nanoparticles.

  • Magnetic nanoparticles are used for cell labeling (e.g., Langerhans islets, human mesenchymal stem and spinal precursor cells). The labeled cells can be transplanted into the injured body tissue, while non-invasive and long-term monitoring of the introduction, migration, proliferation, differentiation and fate via the total magnetic resonance imaging can be performed.
  • Modification of magnetic nanoparticles by heterobifunctional diphosphonates. We prepared magnetic conjugates with −NH2, −CH=CH2 and −C≡CH reactive groups for immobilization of different ligands and ion exchangers. Modifications with diphosphonate or poly(ethylene glycol) derivatives is intended for hydrophilization and biocompatibilization of magnetic nanoparticles.
  • 3-D scaffolds for cultivation of stem and neural cells for tissue engineering and regenerative medicine, such as healing of damaged spinal cord.

Cultivation of cells in superporous PHEMA hydrogel scaffold.

Alginate scaffold with oriented microtubular pores.





Otto Wichterle Centre of Polymer Materials and Technologies - CPMTOW

Centre of Biomedicinal Polymers - CBMP

Centre of Polymer Sensors - CPS

Polymers for Power Engineering - Energolab


Institute of Macromolecular Chemistry AS CR
Heyrovského nám. 2
162 06 Prague 6
Czech Republic
tel:+420 296 809 111
fax:+420 296 809 410

Strategie 21