PREPARATION AND PROPERTIES OF PLASTICIZED POLY (VINYL CHLORIDE)/ORGANICALLY MODIFIED MONTMORILLONITE NANOCOMPOSITES

<u>Onsy. I. H. Dimitry</u>^a, Azima. L. G. Saad^b ^aPetrochemicals Dept., Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt ^bMicrowave Physics Dept., National Res. Centre, Cairo, 12311, Egypt (e-mail: onsy dimitry@hotmail.com)

Nanostructured polymers have attracted much attention in material science because of their unique properties and their applications in nanomaterials and nanodevices. In this study; an organophilic montmorillonite (OMMT), Cloisite 6A, was used as nanoclay. Plasticized poly(vinyl chloride) (PVC)/OMMT nanocomposites containing 1,3,5,7, and 10 wt% of Cloisite 6A were prepared via melt compounding using a twin screw extruder.

Compared to neat PVC the nanocomposite containing 5 wt% organoclay from TGA, the greatest enhancement of decomposition shows. temperature¹. The interaction between PVC and silicate layer was studied by FTIR spectroscopy which confirms strong interactions between the nanometric silicate layers and PVC segments. Electrical conductivity σ measurements show that σ of nanocomposites increases with increasing temperature from 30 to 100°C, and show a considerable increase in the σ of plasticized PVC with increasing filler content up to 5 wt%, especially at higher temperatures (Table 1). The obtained values are situated between the two extremes of those of semiconductors ($10^{-10} - 10^{+2} \Omega^{-1} \text{ cm}^{-1}$). The activation energy E_{σ} was found to be lowest for the composite containing 5 wt% organoclay. The nanoscaled dispersion of silicate layers and strong interfacial interactions between silicate layers and PVC chains effectively enhance the tensile properties of plasticized PVC nanocomposites upon using 5 wt% organoclay. The dispersed behavior of organoclay in PVC matrix was identified by using XRD, TEM, and SEM analyses² which reveal the exfoliated structures in these nanocomposites when 5 wt% of Cloisite 6A was used (Figure 1).

1. T. Peprnicek et al, Polym. Degrad. Stab. 91,1855,2006.

2. B. Lepoittevin et al ,Polymer 44,2033 ,2003.

	σ x10 ⁹ (Ω ⁻¹ cm ⁻¹) at various temperatures (°C)							
Samples*	30	40	50	60	70	80	90	100
PVC-DOP-0			0.01	0.02	0.04	0.06	0.09	0.12
PVC-DOP-1	0.02	0.04	0.14	0.31	0.74	2.12	4.79	9.80
PVC-DOP-3	0.05	0.15	0.51	1.12	2.63	7.51	16.98	34.60
PVC-DOP-5	0.07	0.20	0.69	1.52	3.59	10.37	23.66	48.50
PVC-DOP-7	0.06	0.18	0.61	1.35	3.18	9.14	20.73	42.30
PVC-DOP-10	0.04	0.13	0.46	1.01	2.37	6.81	15.40	31.53

Table 1. Electrical conductivity (σ) of plasticized PVC mixed with various proportions of Cloisite 6A

* The numbers in the names of the samples indicate the content of Cloisite 6A; for example, PVC-DOP-5 means a sample with 5 wt% of Cloisite 6A

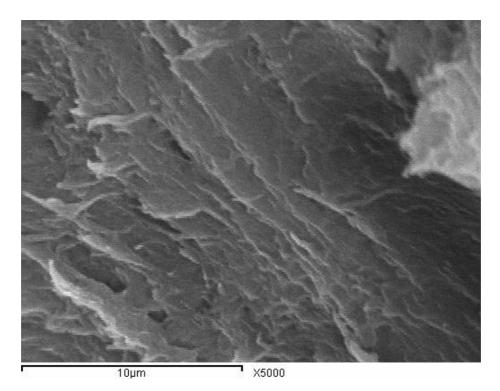


Figure 1: SEM micrograph of plasticized PVC/5 wt% Cloisite 6A nanocomposite