IMPACT MODIFICATION OF POLY-4-METHYL-PENTENE-1 AND POLYPROPYLENE BY CONVENTIONAL AND NON-CONVENTIONAL ELASTOMERS

Katja Klimke^a, Doris Machl^a, Tung Pham^b, Markus Gahleitner^a

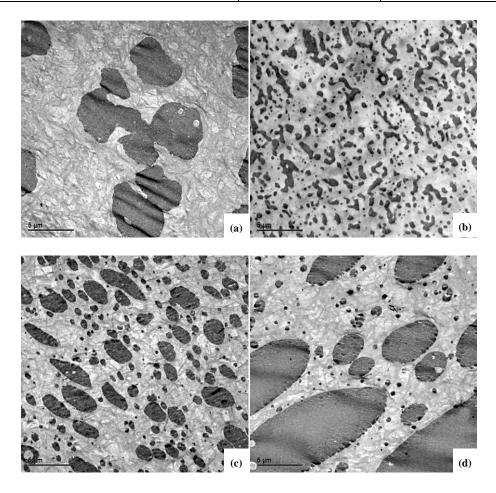
^a Innovation & Technology

^bMoulding Product Management

Borealis Polyolefine GmbH,

St.-Peter-Strasse 25, 4021 Linz, Austria
(katja.klimke@borealisgroup.com, www.borealisgroup.com)

Introduction: Poly-4-methyl-pentene-1 (PMP) is a semi-crystalline polymer for special applications requiring high stiffness and heat resistance. Even more than polypropylene (PP) homopolymers it suffers from a lack of impact strength. The relative effect of different elastomer types for impact modification was investigated for both PMP and PP.


Methods: Basic characterisation consisted of tensile and Charpy notched impact measurements. To gain insight into the related mechanisms both the morphology (via TEM) and the solid-state dynamic mechanical behaviour was investigated.

Results: Conventional impact modifiers, such as commercial ethylene/propylene-^{1,2,3} (e.g. Vistamaxx) and ethylene/octene⁴-elastomers (e.g. Engage), were found to result in an acceptable stiffness/impact balance for both base polymer types. In addition a silane-crosslinkable LDPE/acrylate copolymer (Visico) was tested as a non-conventional impact modifier^{5,6} which appears to deliver good impact properties for the case of PP only. Morphology investigations and the solid-state dynamic mechanical behaviour delivered some insight into the related mechanisms.

- 1. Nolley E., Barlow J.W., Paul D.R., Polym. Sci. Eng. 20(5): 364-369, 1980.
- 2. Dharmarajan N., Srinivas S., Williams M.G. et al., ANTEC 2005 p. 1252-1256.
- 3. Chen X.-H., Maa G.-Q., Li J.-Q. et al., Polymer 50: 3347–3360, 2009.
- 4. Lee H.-Y., Kim D. H., Son Y., J. Appl. Polym. Sci. 103: 1133–1139, 2007.
- 5. Yu T.C., Polym. Sci. Eng. 41(4): 656-671, 2001.
- 6. Bouhelal S., Cagiao M. E., Khellaf S. et al., J. Appl. Polym. Sci. 109: 795–804, 2008.

 Table 1: Stiffness-impact-balance for the PMP and PP blends.

Blend	Tensile Modulus	Charpy ISO 179 1eA 23°C [kJ/m²]
components	ISO 527 [MPa]	1eA 23°C [kJ/m]
PMP	1541	1.0
PMP + 30 wt-% Visico LE4481	888	1.9
PMP + 30 wt-% Vistamaxx 1120	1019	14.7
PMP + 30 wt-% Engage 8411	1004	5.3
PP	680	6.2
PP + 25 wt-% Visico LE4481	482	19.2

Figure 1: TEM micrographs of the blends: (a) PMP + 30% Visico, (b) PP + 30% Visico, (c) PMP + 30% Vistamaxx and (c) PMP + 30% Engage. The observed surface was perpendicular to the flow direction and the scale bar represents 5 μ m.