Advanced ssNMR techniques to study of specific pharmaceutical materials based on solid solutions and dispersions of active ingredients in polymer matrix

In many clinical studies it has already been demonstrated that higher efficiency of APIs (active pharmaceutical ingredients) significantly reduces menace of many diseases. API has higher efficiency when has good bioavailability and that is good solubility in human fluids and good permeability in gastrointestinal tract (GIT). Based on this pharmacokinetical properties of API Food and Drug Administration (FDA) created The Biopharmaceutical Classification System (BCS). BCS is based on aqueous solubility and intestinal permeability of the drug substance in human. It classifies API into one of four classes.

The Biopharmaceutical Classification System (BCS)

Р	Η	Class 2	Class 1			
Ε	Ι	lip ophilic	amfifilic			
R	G	simvastatin	pravastatin			
\mathbf{M}	Н	atorvastatin	losartan			
Ε						
\mathbf{A}						
В		Class 4	Class 3			
I	L	problematic	hydrophilic			
L	0	acyklovir	gabapentin			
Ι	\mathbf{W}	furosemid	valcyklovir			
Т						
\mathbf{Y}						
		LOW	HIGH			
		SOLUBILITY				

The highly soluble API – when the highest oral dose is soluble in ≤ 250 ml of aqueous media over the pH range of 1.2 to 6.8. **The highly permeable API** – when the highest oral dose is absorb of > 90% in GIT.

Unfortunately a lot of pharmaceutical substances (especially classes 2. and 4., 40 – 60% of world production of drugs) exhibit low bioavalibility and solubility in water. That is why current pharmaceutical research focuses on increasing solubility and

thus also bioavailability of these substances.

API-polymer systems

In our work we focussed our attention on the study of structural properties of APIs in the prepared solid polymer dispersions, solutions and co-crystals exhibiting increased solubility. Nowadays we are testing properties of acetylsalicylic acid (AcSalAc) as an API system with relatively low solubility. One of several procedures of creating bioavailable system – lyofilization (lyo), was used to combine this API with polymeric soluble polyvinylpyrrolidon(PVP), nontoxic matrix water poly[N-(2-hydroxypropyl)metacrylamide] (HPMA), poly(2-ethyl-2-oxazoline) (PEO) and polyethylene glycol (PEG). The polymers were used with different molecular weight. As a solvents of this API-polymer system were used nontoxic and biodegradable compounds, which solubilize API and polymer matrix as water, ethanol and tertbutanol (T-but).

Samples of API-polymer system:

Sample G T₁ (¹H) [s]

Sample A: AcSalAc/ T-but, 30 % + PEG₂₀₀₀/ T-but, 70 % **Sample B**: AcSalAc/ T-but, 30 % + PEG₆₀₀₀/ T-but, 70 % **Sample C**: AcSalAc/ T-but, 30 % + PEG_{10 000}/ T-but, 70 % **Sample D:** AcSalAc/ T-but, 30 % + PVP₇₆₀₀/ T-but, 70 % **Sample E**: AcSalAc/ T-but, 30 % + PVP_{40 000}/ T-but, 70 % **Sample F**: AcSalAc/ T-but, 30 % + PVP_{930 000}/ T-but, 70%

Sample G: AcSalAc/ T-but, 30 % + PEO₅₀₀₀₀/ water, 70 % Sample H: AcSalAc/ T-but, 30 % + HPMA₁₈₅₀₀/ water, 70 % Sample I: AcSalAc/ T-but, 30 % + HPMA₅₄₀₀₀/water, 70 % Sample J: AcSalAc/ T-but, 30 % + HPMA₈₁₀₀₀/ water, 70 %

2.8 2.7 2.6 2.7

3.3 2.6 2.9 3.4 3.3 3.9

T₁ (¹H) [s]

Olivia Policianova, Libor Kobera, Martina Urbanova, Jiri Brus Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Czech Republic, e-mail: policianova@imc.cas.cz

Results

ation of the interstitial nanocrystalline dispersion									
СН	CH ₃	C=0	CH ₂	CH ₂		HPMA _{54 000}	C=0	СН	CH ₂
38	1.9	0.9	0.9		Τ _{1ρ} (¹ Η) [ms]	5.6	5.6	5.5	
					- \	T ₁ (¹ H) [s]	1	1	1
500	480	3.8	4	4	the domain size of system is 10-100nm				
13	14	1	1	1					
28	1.9	1	1	1					

/stem						
СН	CH ₃					
377	236					
59	57					

The creation of homogeneous solid dispersions, consisting of AcSalAc dispersed in various polymer matrixes, is confirmed by the identical value of T_{10} (¹H) relaxation. The AcSalAc molecule adopted high frequency motion of polymer in measured samples of the solid

Conclusion

The API-polymeric systems of acetylsalicylic acid (API) in combination with PEG, PVP, PEO or HPMA (polymeric matrix) were prepared by lyofilization. The polymers were used with different molecular weight. The structural reason observed in polymer–drug interaction were probed by a wide range of ¹³C CP/MAS NMR, ¹H MAS NMR, ¹H DQ-BABA and relaxation experiments. It was confirmed that lyophilization of the solutions consisting of AcSalAc (30%)/ T-but with PVP (70%)/ T-but or PEO (70%)/water leads to the formation of the required amorphous solid solutions, the solution consisting of AcSalAc (30%)/ T-but with HPMA (70%)/ water leads to the formation of the interstitial nanocrystalline dispersion and the solution consisting of AcSalAc (30%)/T-but with PEG (70%)/T-but leads to the formation of the crystalline solid dispersion. This statement follows from dramatic broadening of NMR signals of AcSalAc in ¹³C CP/MAS NMR spectrum and changes in ¹H T₁ relaxation times. In dispersions with PEG the new signal of the CH₃ group is observed. The decrease in value of the T_1 (¹H) relaxation times of the AcSalAc in samples confirms molecular mixing API with polymer. The correlation between API and polymer matrix in samples D, I is shown in the ¹H DQ-BABA experiments. We managed to prepare API-polymeric systems with expectation of creation of the amorphous solid solutions and solid dispersions. This and other systems will be subject of the incoming studies by advanced ssNMR experiments, Joint Laboratory of Solid-State NMR Raman spectroscopy, dissolution profile... IMC AS CZ and JHIPC AS CZ

