Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

10-Methylisoalloxazine 5-oxide from synchrotron powder diffraction data

Jan Rohlíček, a* Radek Cibulka, b Jana Cibulková, c Jaroslav Maixner^c and Michal Hušák^a

^aDepartment of Solid State Chemistry, Institute of Chemical Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic, b Department of Organic Chemistry, Institute of Chemical Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic, and ^cCentral Laboratories, Institute of Chemical Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic Correspondence e-mail: rohlicej@vscht.cz

Received 16 November 2010; accepted 23 November 2010

Key indicators: powder synchrotron study; T = 293 K; mean $\sigma(C-C) = 0.013 \text{ Å}$; R factor = 0.042; wR factor = 0.056; data-to-parameter ratio = 44.5.

The title compound [systematic name: 10-methylbenzo[g]pteridine-2,4(3H,10H)-dione 5-oxide], C₁₁H₈N₄O₃, consists of a large rigid isoalloxazine group which is approximately planar (r.m.s. deviation = 0.037 Å). In the crystal, intermolecular N— H...O hydrogen bonds link the molecules into centrosymmetric dimers. Dimers related by translation along the c axis form stacks through π - π interactions [centroid-centroid distances = 3.560 (5) and 3.542 (5) Å]. Weak intermolecular C−H···O interactions further consolidate the crystal packing.

Related literature

For the preparation of the title compound, see: Yoneda et al. (1976). For background to flavins, see: Massey (2000), Palfey & Massey (1998); Müller (1991). For a description of the Cambridge Structural Database, see: Allen (2002). For the crystal structures of similar compounds, see: Wang & Fritchie (1973); Farrán et al. (2007).

Experimental

Crystal data

 $C_{11}H_8N_4O_3$ $M_r = 244.21$ Monoclinic, P2₁/a a = 13.8774 (6) Å b = 14.5321 (4) Å

c = 4.9305 (2) Å $\beta = 90.830 (3)^{\circ}$ $V = 994.22 (5) \text{ Å}^3$ Synchrotron radiation $\lambda = 0.8856 \text{ Å}$ T = 293 K $\mu = 0.20 \; \mathrm{mm}^{-1}$ cylinder, 20 × 1 mm

Data collection

ESRF Grenoble, BM20 Scan method: step diffractometer $2\theta_{\min} = 4.0^{\circ}, 2\theta_{\max} = 36.5^{\circ}, 2\theta_{\text{step}} =$ Specimen mounting: capilary Data collection mode: transmission

Refinement

 $R_{\rm p} = 0.042$ $\chi^2 = 7.129$ $R_{\rm wp} = 0.056$ 3251 data points $R_{\rm exp} = 0.021$ 73 parameters $R_{\text{Bragg}} = 0.06$ $R(F^2) = 0.060$ 57 restraints

H-atom parameters not refined

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D-H	$\cdot \cdot A$
N3-H1N3···O11 ⁱ C14-H2C14···O12 ⁱⁱ C14-H1C14···O13 ⁱⁱⁱ	0.86 0.95 0.95	1.92 2.63 2.33	2.764 (14) 3.097 (16) 3.194 (17)	166 111 151	
Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1.$	-x, -y,	-z + 3; (ii)	$-x + \frac{1}{2}, y + \frac{1}{2},$	-z + 2;	(iii)

Data collection: ESRF SPEC (Certified Scientific Software, 2003); cell refinement: GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE (Shirley, 2000); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities for project CH-3085 and we would like to thank Dr Carsten Baehtz for assistance in using Rossendorf Beamline BM20. This study was supported by the research programs NPV II 2B08021, MSM6046137302 and MSM 6046137301 of the Ministry of Education, Youth and Sports of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5002).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Certified Scientific Software (2003). ESRF SPEC. Certified Scientific Software, Cambridge, MA, USA.

Farrán, M. A., Claramunt, R. M., López, C., Pinilla, E., Torres, M. R. & Elguero, J. (2007). ARKIVOC, IV, 20-38.

Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.

Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Massey, V. (2000). Biochem. Soc. Trans. 28, 283-296.

Müller, F. (1991). Chemistry and Biochemistry of Flavoenzymes. Boca Raton, Florida: CRC Press.

Palfey, B. & Massey, V. (1998). Comprehensive Biological Catalysis, Vol. 3, edited by M. Sinnott, pp. 83-154. London: Academic Press.

Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press.

organic compounds

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Wang, M. & Fritchie, C. J. (1973). Acta Cryst. B29, 2040–2045.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yoneda, F., Sakuma, Y., Ichiba, M. & Shinomura, K. (1976). *J. Am. Chem. Soc.* **98**, 830–835.

Acta Cryst. (2010). E66, o3350–o3351 Rohlíček et al. • C₁₁H₈N₄O₃ **o3351**

supplementary m	aterials	

Acta Cryst. (2010). E66, o3350-o3351 [doi:10.1107/S1600536810048932]

10-Methylisoalloxazine 5-oxide from synchrotron powder diffraction data

J. Rohlícek, R. Cibulka, J. Cibulková, J. Maixner and M. Husák

Comment

The titled compound, 10-methylbenzo[g]pteridine-2,4(3H,10H)-dione-5-oxide belongs to a group of isoalloxazine-5-oxides which are important intermediates in synthesis of flavin derivatives (Yoneda et al., 1976). Flavins are important natural compounds which act as cofactors in redox enzymes (Massey, 2000; Palfey & Massey, 1998; Müller, 1991). Synthetic procedure utilizing isoalloxazine-5-oxides allows synthesis of non-natural flavin derivatives which are used in flavoenzyme models. To our knowledge, no crystal structure of any isoalloxazine-5-oxide has so far been published.

The asymmetric unit contains one molecule of the title compound, which is almost planar. The molecule consists of a isoalloxazine group which is formed by three connected rings - benzene, pyrazine and uracil ring. The most significant deviation from planarity occurs at the uracil ring, where the oxygen atom O12 is found to be out of the plane (torsion angle C10a—C4a—C4a—C4a—O12 is app. 6.5°). The deviation of O12 atom is in accordance with the C4 carbon atom position which is slightly out of the plane and form the planar sp^2 hybridization. The next deviation from planarity is on the pyrazine ring where the nitrogen atom N10 leaves out of the plane and the connected methyl group follow the direction of sp^2 hybridization (torsion angle C4a—C10a—N10—C14 is app. 5.5°). Molecules of titled compound are connected together by several hydrogen bonds (Table 2) and by π - π interactions (Table 1). The strongest hydrogen bonds N3-H1N3···O11 connects always two molecules together into dimers, see Fig. 2. On the other hand, the other two hydrogen bonds C14-H1C14···O13 and C14-H2C14···O12 together with π - π interactions form molecules to the infinity layers which are parallel to (100). These layers are connected by the above mentioned N3-H1N3···O11 hydrogen bonds.

The survey in the CSD (Allen, 2002) found several crystal structures of similar molecules which are derived from isoal-loxazine, but no crystal structure of isoalloxazine-5-oxide which we present here was found. The similar crystal structures of 10-Methylisoalloxazine (Wang & Fritchie, 1973) and 7,10-Dimethylisoalloxazine (Farrán *et al.*, 2007) can be used for comparison. In both structures the isoalloxazine part is approximately planar and both structures form dimers which are connected by N—H···O hydrogen bonds. The occurrence of the π - π stacking is also evident.

Experimental

The title compound was prepared according to Yoneda *et al.* (1976). The 6-(N-Methylanilino)uracil (15.6 g; 65 mmol) was dissolved in acetic acid (130 ml) and sodium nitrite (22.8 g, 0.325 mol) was added. The mixture was stirred at room temperature for 3 h, diluted with water (325 ml), and allowed to stand overnight. The crystals were collected by filtration, washed with water several times, and dried. Recrystallization from aqueous acetic acid gave orange needles (17.4 g; 98%). $M.p. > 300 \, ^{\circ}$ C.

¹H NMR (DMSO-d₆, 300 MHz) δ3,89 (s, 3H, –C*H*₃), 7,57 (m, 1H, Ar—H), 7.95 (m, 2H, Ar—H), 8,30 (d, 1H, J=8.2, Ar—H), 11.11 (s, 1H, N*H*).

For C₁₁H₈N₄O₃ (244.21) calculated: 54.10% C, 3.30% H, 22.94% N; found: 54.18% C, 3.41% H, 23.05% N.

supplementary materials

The X-Ray diffraction data were collected on the Rossendorf Beamline BM20 at the ESRF in Grenoble. The energy was fixed at 14 keV which is equal to λ =0.8856 Å wavelength (the precise wavelength value was confirmed by the LaB₆ standard measurement). The beamline was equipped with double-crystal Si(111) monochromator and with two collimating/focusing mirrors (Si and Pt-coating). The sample was placed in the 1-mm-borosilicate glass capillary rotated during the measurement. The diffraction pattern was measured at room temperature from 4° 20 to 36.5° 20 with the 0.01° 20 step size.

Refinement

The indexation was performed by the CRYSFIRE package (Shirley, 2000). The final cell a=13.8774 (6) Å, b = 14.5321 (4) Å, c = 4.9305 (2) Å, β = 90.830 (3) ° and V = 993.48 (7) Å³ was found from 20 peaks by several embedded indexation programs. If the volume of the molecule is compared with the volume of the found unit, it is clear that there are four molecules in the unit cell. The space group $P2_1/a$ (Z = 4) was selected according to the peak extinction and the agreement of the Le-bail fit. The crystal structure was solved by parallel tempering algorithm implemented in the program FOX (Favre-Nicolin & Černý, 2002). We decided to test the structure solution run for other space groups which had similar peak extinction to validate the selection of the P21/a space group. These two space groups P 2/m and P21/m were selected, but the solution was not found.

The final refinement was performed with GSAS (Larson & Von Dreele, 1994). The structure was restrained by soft bonds and angles restraints. Four planar groups restraints were added - one for the benzene ring (C5a—C9a) and remaining three for the sp^2 hybridization (C2/N1/N3/O11, C4a/C4/N3/O12 and C10a/C4a/C4/N5). At the final stage, positions and isotropic thermal parameters of all non-hydrogen atoms were refined to the low agreement R-factors ($R_p = 4.2\%$, $R_{wp} = 5.6\%$). During the refinement all hydrogen atoms were kept in their theoretical positions and were not refined. The final Rietveld plot is shown on the Fig. 3.

Figures

Fig. 1. *ORTEP* plot of the title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius.

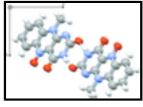


Fig. 2. View of N—H···O hydrogen bonded (dotted lines) centrosymmetric dimers in the title crystal structure.

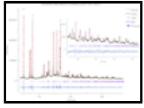


Fig. 3. The final Rietveld plot showing the measured data (black thin-cross), calculated data (red line) and difference curve (blue line). Calculated positions of the reflection are shown by vertical bars.

10-methylbenzo[g]pteridine-2,4(3H,10H)-dione 5-oxide

Crystal data

 $C_{11}H_8N_4O_3$ Z = 4

 $M_r = 244.21$ F(000) = 504

 $D_{\rm x} = 1.633 \; {\rm Mg \; m}^{-3}$ Monoclinic, P2₁/a

Synchrotron radiation, $\lambda = 0.8856 \text{ Å}$ Hall symbol: -P 2yab

a = 13.8774 (6) Å $\mu = 0.20 \text{ mm}^{-1}$ b = 14.5321 (4) Å T = 293 Kc = 4.9305 (2) Å yellow

 $\beta = 90.830 (3)^{\circ}$ cylinder, 20 × 1 mm

 $V = 994.22 (5) \text{ Å}^3$

Data collection

ESRF Grenoble, BM20 Data collection mode: transmission diffractometer

Scan method: step Radiation source: synchrotron

 $2\theta_{\text{min}} = 4.0^{\circ}, 2\theta_{\text{max}} = 36.5^{\circ}, 2\theta_{\text{step}} = 0.01^{\circ}$ Specimen mounting: capilary

Refinement

 $R_{\rm Bragg} = 0.06$

Excluded region(s): none

Least-squares matrix: full 73 parameters $R_{\rm p} = 0.042$ 57 restraints

 $R_{\rm wp} = 0.056$ 0 constraints

Hydrogen site location: inferred from neighbouring $R_{\rm exp} = 0.021$

 $R(F^2) = 0.06000$ Weighting scheme based on measured s.u.'s

 $\chi^2 = 7.129$ $(\Delta/\sigma)_{\text{max}} = 0.02$

Background function: GSAS Background function number 1 with 20 terms. Shifted Chebyshev function of 1st kind 1: 1199.79 2: -234.522 3: -315.536 4: 152.956 5: 123.532 6: -246.657 7: 116.810 8: 3251 data points

83.9272 9: -107.809 10: -12.4938 11: 79.2500 12: -25.2804 13: -27.8174 14: 13.6120 15: 6.03858 16: -3.86487 17: 2.09281 18: 9.92947 19: -18.6000 20:

H-atom parameters not refined

1.36657

Preferred orientation correction: March-Dollase AX-IS 1 Ratio= 0.89956 h= 0.000 k= 0.000 l= 1.000 Prefered orientation correction range: Min= 0.85318,

Max = 1.37377

Profile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst., 20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst., 27, 892-900. Microstrain broadening by P.W. Stephens, (1999).

supplementary materials

J. Appl. Cryst.,32,281-289. #1(GU) = 118.875 #2(GV) = 80.014 #3(GW) = 0.010 #4(GP) = 0.000 #5(LX) = 1.385 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = 0.0000 #9(sfec) = 0.00 #10(S/L) = 0.0005 #11(H/L) = 0.0142 #12(eta) = 0.0000 #13(S400) = 1.7E-01 #14(S040) = 1.8E-02 #15(S004) = 6.2E-01 #16(S220) = -4.6E-02 #17(S202) = 3.4E-01 #18(S022) = 1.6E-01 #19(S301) = -5.6E-01 #20(S103) = 7.9E-01 #21(S121) = 7.0E-02 Peak tails are ignored where the intensity is below 0.0001 times the peak Aniso. broadening axis 0.0 0.0 1.0

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.0773 (7)	0.1443 (5)	1.0053 (18)	0.036 (6)*
C2	0.0483 (8)	0.0827 (7)	1.194(3)	0.075 (8)*
N3	0.0977 (7)	-0.0028 (6)	1.2303 (19)	0.068 (6)*
C4	0.1784 (5)	-0.0297(5)	1.0946 (14)	0.028 (8)*
C4a	0.2075 (5)	0.0367 (5)	0.8768 (14)	0.049 (7)*
N5	0.2843 (7)	0.0175 (6)	0.725 (2)	0.120(8)*
C5a	0.3110(6)	0.0833 (6)	0.5319 (18)	0.077 (9)*
C6	0.3917 (7)	0.0645 (6)	0.365 (2)	0.037 (7)*
C7	0.4210(6)	0.1290(8)	0.180(2)	0.052 (7)*
C8	0.3703 (8)	0.2112 (7)	0.1520 (18)	0.059 (8)*
C9	0.2917 (7)	0.2332 (6)	0.311 (2)	0.054(8)*
C9a	0.2610(6)	0.1684 (6)	0.5019 (18)	0.045 (9)*
N10	0.1787 (7)	0.1824 (7)	0.6664 (19)	0.078 (7)*
C10a	0.1522 (5)	0.1216 (5)	0.8572 (14)	0.046 (8)*
O11	-0.0238 (7)	0.1000(7)	1.338 (2)	0.063 (5)*
O12	0.2230 (7)	-0.1014 (5)	1.1524 (17)	0.037 (4)*
O13	0.3291 (8)	-0.0597 (7)	0.748 (2)	0.100 (5)*
C14	0.1211 (10)	0.2660 (9)	0.619(3)	0.095 (9)*
H1N3	0.0746	-0.0405	1.3466	0.0804*
H1C6	0.425	0.0076	0.3816	0.0456*
H1C7	0.4758	0.1173	0.0718	0.0612*
H1C8	0.3906	0.254	0.0188	0.0708*
H1C9	0.2597	0.2905	0.2901	0.0636*
H1C14	0.1488	0.3013	0.479	0.114*
H2C14	0.119	0.3013	0.781	0.114*
H3C14	0.057	0.249	0.567	0.114*

Geometric parameters (Å, °)

O11—C2	1.261 (16)	N10—C9a	1.425 (13)
C4—C4a	1.503 (10)	N3—C2	1.429 (14)
O12—C4	1.243 (11)	N3—C4	1.370 (12)
C5a—C9a	1.425 (12)	N5—C5a	1.403 (13)
O13—N5	1.287 (14)	N5—C4a	1.341 (12)
C5a—C6	1.426 (13)	C10a—C4a	1.455 (10)
N1—C10a	1.321 (12)	C14—H1C14	0.9500

supplementary materials

C6—C7	1.374 (14)	C14—H2C14	0.9500
N1—C2	1.356 (15)	C14—H3C14	0.9500
C7—C8	1.392 (15)	C6—H1C6	0.9500
N10—C10a	1.346 (12)	C7—H1C7	0.9500
C8—C9	1.390 (14)	N3—H1N3	0.8600
N10—C14	1.471 (17)	C8—H1C8	0.9500
C9—C9a	1.402 (13)	C9—H1C9	0.9500
Cg1···Cg2 ⁱ	3.56 (1)	Cg1···Cg3 ⁱ	3.54(1)
C2—N1—C10A	117.3 (8)	C8—C9—C9A	118.2 (8)
C2—N3—C4	125.5 (9)	N10—C9A—C5A	117.3 (8)
O13—N5—C4A	121.3 (9)	N10—C9A—C9	122.7 (8)
O13—N5—C5A	121.5 (9)	C5A—C9A—C9	120.0 (8)
C4A—N5—C5A	117.2 (8)	N1—C10A—N10	116.6 (8)
C9A—N10—C10A	122.3 (9)	N1—C10A—C4A	126.4 (7)
C9A—N10—C14	117.8 (9)	N10—C10A—C4A	117.0 (7)
C10A—N10—C14	120.0 (9)	C2—N3—H1N3	117
O11—C2—N1	120.0 (10)	C4—N3—H1N3	117
O11—C2—N3	119.1 (11)	C5A—C6—H1C6	120
N1—C2—N3	120.9 (10)	C7—C6—H1C6	120
O12—C4—N3	122.4 (8)	C6—C7—H1C7	120
O12—C4—C4A	124.3 (7)	C8—C7—H1C7	120
N3—C4—C4A	113.3 (7)	C7—C8—H1C8	118
N5—C4A—C4	119.3 (7)	C9—C8—H1C8	119
N5—C4A—C10A	124.2 (7)	C8—C9—H1C9	121
C4—C4A—C10A	116.4 (6)	C9A—C9—H1C9	121
N5—C5A—C6	118.6 (8)	N10—C14—H1C14	110
N5—C5A—C9A	121.9 (8)	N10—C14—H2C14	110
C6—C5A—C9A	119.5 (8)	N10—C14—H3C14	109
C5A—C6—C7	119.7 (8)	H1C14—C14—H2C14	110
C6—C7—C8	119.8 (9)	H1C14—C14—H3C14	109
C7—C8—C9	122.8 (9)		
Symmetry codes: (i) x , y , $z+1$.			

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N3—H1N3···O11 ⁱⁱ	0.86	1.92	2.764 (14)	166
C14—H2C14···O12 ⁱⁱⁱ	0.95	2.63	3.097 (16)	111
C14—H1C14···O13 ^{iv}	0.95	2.33	3.194 (17)	151

Symmetry codes: (ii) -x, -y, -z+3; (iii) -x+1/2, y+1/2, -z+2; (iv) -x+1/2, y+1/2, -z+1.

Fig. 1

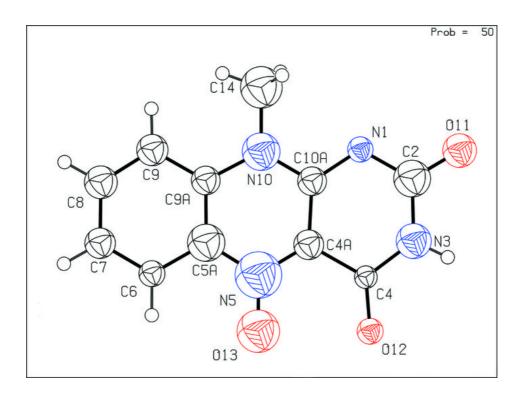
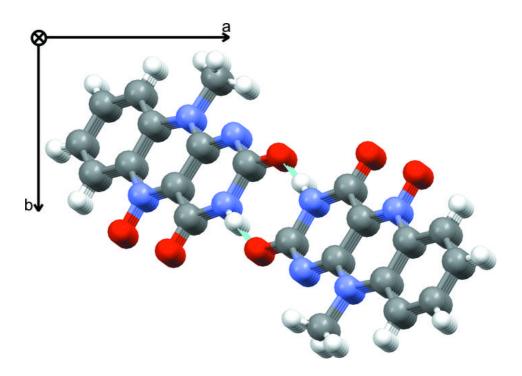
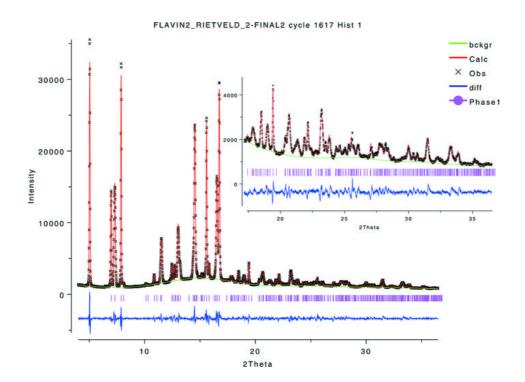




Fig. 2

