

Institute of Macromolecular Chemistry ASCR, v.v.i. Heyrovského nám. 2 CZ-162 06 Praha 6 Czech Republic

a . Základní postup při ovládání NMR spektrometru pevného stavu

b. Nastavení a optimalizace základních parametrů

c. Zpracování spektra

Martina Urbanová a Jiří Brus

(Verze 1.2.-2011) (neupravená a neúplná, za případné nedostatky se omlouváme a připomínky vítáme)

Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz

Takto vypadá NMR spektrometr

1) Vkládání a rotace vzorku pod magickým úhlem

Po naplnění a povrchovém očistění kyvety (musí být dokonale čistá a odmaštěná) a jejím

označení (značení na spodní hraně kyvety), je možno kyvetu vložit do stroje. Na obrazovce zaktualizujeme okno **MAS control** a zmáčkneme LT **insert**, nyní máme 10 s na vložení vzorku, pak je automaticky zastaven přívod vzduchu, vzorek vkládáme čepičkou nahoru. Po vložení je nutno nastavit rotaci vzorku (jeli vyšší než 5 kHz nastavujeme postupně!!! - nejdříve 5 kHz a přidáváme asi po 3 kHz), zmáčkneme **etc...** a rozbalí se nám nabídkové okno, najedeme si **set new spinrate** a nastavíme rotaci, **OK.** a **start** – vzorek by

měl začít rotovat – (sledujeme kontrolní okénko), pokud se neroztočí – **stop** – **eject** – **insert** – **start** (je totiž možné, že vzorek špatně zapadnul). Chceme-li vzorek vyndat používáme tlačítko **eject**.

2) Ladění sondy – wobb

Po vložení vzorku do sondy a jeho roztočení na danou rotaci musíme provést naladění sondy. Do příkazového řádku zadáme příkaz w_{\downarrow} . Nejdříve začínáme ladit ¹H-kanál. Posun ladící frekvence sledujeme na obrazovce, objeví se *V* signál, jehož střed nastavuji na referenční frekvenci – pomocí táhla na konci sondy označeného **tuning (TH)**, která je indikována svislou čarou. Minimum signálu nastavuji na spodní okraj okna – **matching (MH)**. Po vyladění musí být diody na předzesilovači zelené. Změnu frekvence provedu kliknutím LT – **wobb-sw** (v levé části obrazovky), pak se objeví okno s otázkou zda změnit jádro. Odpověď je **yes**. Nyní provedu stejným způsobem ladění jádra X (**MX, TX**). Ještě jednou zkontroluji ¹H-kanál a je-li vše v pořádku zastavuji **wobble** příkazem s...

3) Optimalizace parametrů pro měření spekter s amplitudově modulovanou cross-polarizací (RAMP/CP/MAS)

Pulsy	<i>i)</i> parametry p1 a p2 udávají délku <i>rf</i> 90° a 180° pulsu pro přímo pozorovaná
	jádra v mikrosekundách. Obvykle nepřevýší 8 μs. (p – pulse)
	ii) parametry p3 a p4 udávají délku rf 90° a 180° pulsu pro dekaplované
	jádro (¹ H) v mikrosekundách. Obvykle nepřevýší 8 µs.
	iii) parametr p15 udává délku cross-polarizační periody. Obvykle mezi 500
	až 2000 μs.
	<i>iv)</i> parametr p31 udává délku speciálního dekaplovacího pulsu pro jádro (¹ H)
	v mikrosekundách. Obvykle nepřevýší 5.5 µs.
<u>Amplitudy</u>	i) parametr pl1 udává amplitudu 90° a 180° a cross-polarizačního pulsu
	(obecně všech pulsů) pro přímo pozorovaná jádra v dB. Udáváno jako útlum
	a tak nejnižší nulová amplituda odpovídá 120 dB. Obvykle není menší jak 4
	dB. (pl – power level)
	<i>ii)</i> parametr pl2 udává amplitudu cross-polarizačního a excitačních pulsů pro
	dekaplované jádro (¹ H) v dB. Obvykle není menší jak 10 dB .
	iii) parametr pl12 udává amplitudu dipolárního dekaplinku pro dekaplované
	jádro (¹ H) v dB. Obvykle není menší jak 6 dB .
Prodlevy	i) parametr d1 udává dobu mezi po sobě následujícímí excitacemi (4-10 s).
	Parametr aq udává dobu snímání dat a zároveň i dobu, kdy je zapnutý
	dipolární dekaplink. Doba nesmí převýšit 50 ms. (d – delay).

Blokové schéma dvou základních pulsních sekvencí, které jsou používány pro měření NMR spekter látek v pevném stavu. V prvním případě je pro přenos polarizace užit amplitudově tvarovaný puls o délce **p15 ms** a střední amplitudě **pl2 dB** (to je vhodné zvláště pro vysoké frekvence rotace – název pulsního programu": **cp.av**, dnes je to standardně používaná sekvence). Ve druhém případě je použit pravidelný obdélníkový puls s konstantní amplitudou. (Starší typ experimentu s cross-polarizací: název pulsního programu": **lgcp.jb**).

Než lze provést experiment na neznámém vzorku nejdříve je nutno změřit standard a na něm zoptimalizovat a nastavit parametry budoucího experimentu. U $^{13}\mathrm{C}$ jader se optimalizace

provádí na vzorku glycinu, při rotaci 5 kHz. Nejprve nastavíme parametry experimentu s amplitudově modulovanou cross-polarizací (pulprog - **cp.av**).

Ze složky **Portfolio** (zaktualizuju z dolní lišty) vyberu experiment pro ladění glycinu, označím si jej LT a **apply**, tímto příkazem se otevře daný experiment. Název experimentu je **13C_gly 1 1**.

Příkazem **ased**, j (otevře se redukovaná tabulka parametrů pro daný experiment či pulsní program, která obsahuje kolem 40-50 parametrů) zkontroluji parametry – srovnám s minulými, které jsou uvedeny v deníku Parametry – zvláště zkontroluji **aq** a **D1**.- relaxační delay musí být <u>20-násobkem akvizice **aq**!!!!!!</u> Pokud bychom chtěli nějaký parametr změnit, tak LT klikneme do příslušného okénka a přepíšeme jej a potvrdíme **entrem**, J. Je-li vše v pořádku, okno zavíráme příkazem **save.**

Zkusmo změříme jedno spektrum. Zadáním příkazu **zg**, spustíme příslušný experiment, pokud bychom chtěli experiment zastavit, zadáme příkaz **s**, data se však neuloží, chceme-li data uložit, je třeba zadat příkaz **halt**, (odentrovat při lichém scanu!!!), data se zapíší, jestliže chceme pokračovat v experimentu zadáváme příkaz **go**, experiment začne znovu a data se načítají k předchozím. Pokud se potřebujeme podívat, jak probíhá experiment zadáváme příkaz **tr**, tím se zapíší data po nejbližším scanu na disk a s těmito daty můžeme dále pracovat – provedeme Fourierovu transformaci **ft**, případně částečně zfázujeme pomocí **fp**, (fázování viz níže). Průběh FIDU sledujeme v tzv. akvizičním okně, které vyvoláme příkazem

a, J. Je vhodné otevřít akviziční okno před spuštěním experimentu zadáním příkazu **zg**, ale není to nezbytné. Po proběhnutí experimentu zadáváme příkaz pro Fourierovu transformaci **ft** nebo **fp**, nyní se nám zobrazí spektrum, které je ještě třeba dále zpracovat. Spektrum zfázujeme.

Je otevřeno okno se spektrem pro provedení FT (nezfázované)

Fázování

Pomocí tlačítka **phase** (v levé části okna), pak tlačítka **biggest** (vybere největší signál) a pomocí okének **ph0** (klikneme **LT** a po kliknutí stále držet levé tlačítko a pohybem nahoru dolů upravit fázi) a **ph1** spektrum zfázujeme. Po provedené operaci, **return** (stále levá část obrazovky) a z nabídky vyberem **save and return**.

Příkazem **abs**, se provede automatická korekce základní linie a zároveň integrace každého píku.

Plně zfázované spektrum glycinu.

My Documents	Clip-Board	XXW File	IN-NMR Acquin	Version e Proce	3.5 on PC-I Iss Analy	PRAG started by rsis Output	Administrator Display Windo	ws							_ 🗆 🔀 Help
76 MAS Con	trol	D	atase	t: < 1	3C-U-AJ	.a-LG 1 1 C	:/Documents	s and Settir	ngs/bak exp.	_4mm_TR >					
insert		т	itle:	U Alá	13C R4	MP/CP MAS,	4mm TR!!!	probe, MAS	13kHz, all	params opt	timized.	1	a ataw	iono ol	
1299	9 Hz		10		C H							J S	tabulk	cou pro	cho zadání
start		*2	12	*	20								barame	trů	
Mode		*8	/8	+									ontimal	izace.	popt
hecycle pri L	Itilities 3.5		~		18								punna		popt.
(A)	74 Param	ster Optimization Setup													
Internet					Р	arameter	Optimiz	ation Setu	р						
Explorer	⊏ S	tore a	us 2D o	data (s	er file)										
Acrobat	– 1	The A	U proș	gram sp	ecified	in AUNM wi	ll be execute	ed							
Reader 4.0	□ F	Run oj	ptimiz	ation i	n backg	ound									
2															
WinDnCD 5 > Power Edition >	Info: Each If the Durin If opt expe	line in checkb g save, ion INC riment r	the table utton of it will be is not z umber 1	e below d a parame saved a ero and o NEXP will	escribes a eter is off, t s comment ption VARI be ignored	single parameter he parameter wil with the prefix 't MOD is 'LIN', the I. You can omit i	r. I be ignored in t Off.'. t in this case.	he AU program.		<u> </u>					
spect.ht	Datas	et: C:/D	ocumen	ts and Si	ettings/bak	/data/exp_4mm_	TR/nmr/13C-U-A	Va-LG/1/							
	On/Off	Param	eter	(PTIMUM	STARTVAL	ENDVAL	NEXP	VARMO) INC					
<u>1</u>		pl1		F	POSMAX	5.0	6.0	þ	LIN	0.1					
Adobe Studio N	Start	t -	falt	Read p	rotocol	Add parameter	r Read par	ameters San	Restore	Update	Exit				
	Status	: Save	param	eters to	file don	e.							- 11		
Notepad		ZD	5	3D	0							*****************	awall Mawa		
		5	w-sfo1		F0 FPN	55	50	45	40	35	30	25	20	15	10
NMH-Check 2.1		k													
		masr	: finishe	ed											

Optimalizace se provádí u parametrů: pl1, p1, p3 a o2.

Parametry **pl1** a **p3** se optimalizují pro signál 176 ppm a parametry **p31** a **o2** pro signál 40 ppm. Nejdříve optimalizujeme parametry pl1 a p3, LT vybereme signál 176 ppm LT klikneme na spektrum před začátkem signálu - objeví se šipka, kterou potvrdíme stiskem kolečka myši – posunem myši po podložce se dostaneme na konec signálu, který potvrdíme opět stiskem kolečka, tím máme vybraný daný signál (roztáhne se na obrazovce), LT uvolníme myš a klikneme na dp1 (levé okno obrazovky), vše postupně odentrujeme a můžeme začít optimalizovat. Pak se zadá příkaz popt a otevře se nám okno pro nastavení optimalizačního experimentu – zadáme příslušné kroky optimalizace – save – start (spuštění optimalizace. Při optimalizačním procesu se nám postupně zobrazují jednotlivě naměřené kroky, v závěru si počítač vybere maximální hodnotu (která se automaticky uloží do tabulky parametrů). Po zoptimalizování změříme závěrečné spektrum - signály by měly mít téměř stejnou intenzitu a pološířky signálu by měly odpovídat pološířkám uvedeným v deníku parametry. Pološířky zjistíme vybráním signálu a příkazem hwcal, Nakonec je velice důležité nakalibrovat změřené spektrum. Vyberem si signál s hodnotou 176 ppm (viz.výše) a poté pomocí (levá lišta na obrazovce) calibrate nastavíme hodnotu 176,03 ppm. Nakonec zkontrolujeme parametr sr (příkaz sr,) a zapíšeme jeho hodnotu , stejně jako sino, (poměr signál/šum) - toto je informační hodnota, kterou pak již nikde nenastavujeme, jen nás informuje o kvalitě experimentu, na rozdíl od sr (tento parametr slouží pro kalibraci NMR škály a nastavujeme jej při dalších experimentech stejně jako další parametry).

4) Nastavení amplitudy rf pole pro dosažení 90° ¹³C pulsu

Ze složky portfolio vyberu správný experiment, 13C_gly 1 2 u tohoto experimentu budu optimalizovat parametr pl11 – ne však přes okno popt, jako v minulém experimentu.

Nejdříve změřím experiment s $p1 = 0,1\mu s$, toto spektrum zfázuji (viz. předchozí úloha) (spektrum má výrazné signály) a poté nastavíme $p1 = 4\mu s$, pro tuhle hodnotu dolaďujeme puls pl11.Snažíme se, aby na změřeném spektru nebyl žádný signál (potom je nastaven 90° puls).

5) Optimalizace parametrů pro měření spekter standardní Hartmann-Hahn cross-polarizací (CP/MAS)

Obdobně jako v prvním případě se optimalizuje výkon radio-frekvenčního ¹³C pole pro cross-polarizaci. Jde tedy o nastavení Hartman-Hahn podmínky, kdy cross-polarizační puls má konstantní amplitudu **pl1**. Použitý pulsní program je **lgcp.jb**. Optimalizace se provádí na vzorku glycinu, při rotaci 10 kHz.

Ze složky **Portfolio** (zaktualizuju z dolní lišty) vyberu experiment pro ladění glycinu, označím si jej L.T. a **apply**, tímto příkazem se otevře daný experiment. Název experimentu je **13C_gly 1 3**.

Pak se nastaví všechny potřebné parametry z experimentu **13C_gly 1 1** a optimalizuje se parametr **pl1** přesně podle bodu **3**.

6) Editace ¹³C signálů – rozlišení CH₃, CH₂, CH a C signálů.

Princip tohoto experimentu je velmi jednoduchý a založený na rozdílné dynamice, tedy rychlosti přenosu polarizace během cross-polarizace. Jedná se v postatě o velmi jednoduchou modifikaci standardní cross-polarizace s konstantní amplitudou ¹³C pole. Název tohoto experimentu je cross-polarization polarization-inversion (CPPI) ze kterého je zřejmé, že v určitém okamžiku se obrátí směr přenosu magnetizace, a jádra pro která je rychlost přenosu polarizace rychlá budou ve výsledném spektru mít negativní signály.

V tomto případě se optimalizuje doba depolarizace, tedy délka pulsu **p10**. Amplitudy obou polí jsou stejné jako v předchozím případě. Použije se optimalizační procedury **popt**. Minimální doba je 5 μ s a maximální 100 μ s. Hledá se největší negativní signál C α Gly při frekvenci rotace 10 kHz.

