Skip to main content
Log in

Synthesis and anti-fouling properties of zwitterionic poly(l-glutamic acid)

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Zwitterionic polymers are frequently used as non-fouling materials for surface modification with following application in medical devices, implants or areas of our lives such as food, water, and energy. Here, authors report the synthesis of zwitterionic poly(l-glutamic acid) copolymer bearing sulfobetaine via combining the ring-opening polymerization of N-carboxyanhydride of γ-benzyl-l-glutamate and grafting reaction of propargylamine, tyramine, and 3-(dimethylamino)-1-propylamine to the polymer backbone with subsequent reaction of 1,3-propanesultone leading to the formation of zwitterionic poly(l-glutamic acid) containing sulfobetaine groups. Zwitterionic properties of the copolymer are represented by positively charged quaternary ammonium groups and negatively charged sulfobetaine moieties. The chemical structure of the synthesized zwitterionic poly(l-glutamic acid) was characterized by 1H NMR, FTIR, and UV/Vis spectroscopy. The zwitterionic abilities of copolymer were confirmed by zeta potential measurements. The zeta potential of zwitterionic polymer decreased from + 15 mV to − 19 mV upon stepwise pH increases from 2 to 11. The surface properties such as hydrophilicity and non-fouling abilities were tested by contact angle analysis and surface plasmon resonance technique, respectively. The prepared material indicates the formation of highly hydrophilic surfaces with relatively low contact angle (26°) and remarkable anti-protein adsorption functions reflected in lower resonance wavelength shifts from SPR sensogram. Results of this work show the importance of the developed biodegradable zwitterionic poly(l-glutamic acid)-based coatings for applications in various biomedical fields.

Graphical abstract

Novel zwitterionic sulfobetaine poly(l-glutamic acid)-based copolymer is prepared by the ring-opening polymerization of N-carboxyanhydride with following grafting reaction and subsequent introducing of the sulfobetaine groups. The developed biocompatible material indicates outstanding anti-fouling abilities and high hydrophilicity. The observed properties are promising for the development of non-fouling materials with biomedical applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Liu, L. Yuan, D. Li, Z. Tang, Y. Wang, G. Chen, H. Chen, J.L. Brash, J. Mater. Chem. B 2, 5718 (2014)

    CAS  PubMed  Google Scholar 

  2. L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Nat. Rev. Microbiol. 2, 95 (2004)

    CAS  PubMed  Google Scholar 

  3. M.P. Schultz, J.A. Bendick, E.R. Holm, W.M. Hertel, Biofouling 27, 87 (2011)

    CAS  PubMed  Google Scholar 

  4. W.J. Yang, K.-G. Neoh, E.-T. Kang, S.L.-M. Teo, Prog. Polym. Sci. 39, 1017 (2014)

    CAS  Google Scholar 

  5. E.V. Skorb, D.V. Andreeva, Adv. Funct. Mater. 23, 4483 (2013)

    CAS  Google Scholar 

  6. S. Nir, M. Reches, Curr. Opin. Biotechnol. 39, 48 (2016)

    CAS  PubMed  Google Scholar 

  7. I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23, 690 (2011)

    CAS  PubMed  Google Scholar 

  8. F. Variola, J. Brunski, G. Orsini, P.T. de Oliveira, R. Wazen, A. Nanci, Nanoscale 3, 335 (2011)

    CAS  PubMed  Google Scholar 

  9. Z. Zhi, Y. Su, Y. Xi, L. Tian, M. Xu, Q. Wang, S. Padidan, P. Li, W. Huang, A.C.S. Appl, Mater. Interfaces 9, 10383 (2017)

    CAS  Google Scholar 

  10. C. Blaszykowski, S. Sheikh, Chem. Soc. Rev. 41, 5599 (2012)

    CAS  PubMed  Google Scholar 

  11. Q. Yu, Y. Zhang, H. Wang, J. Brash, H. Chen, Acta Biomater. 7, 1550 (2011)

    CAS  PubMed  Google Scholar 

  12. J. Wang, M.I. Gibson, R. Barbey, S.J. Xiao, H.A. Klok, Macromol. Rapid Commun. 30, 845 (2009)

    PubMed  Google Scholar 

  13. Q. Liu, A. Singh, L. Liu, Biomacromol 14, 226 (2013)

    CAS  Google Scholar 

  14. J. Kuang, P.B. Messersmith, Langmuir 28, 7258 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Jiang, Z. Cao, Adv. Mater. 22, 920 (2010)

    CAS  PubMed  Google Scholar 

  16. J. Hu, G. Wang, W. Zhao, W. Gao, J. Control. Release 237, 71 (2016)

    CAS  PubMed  Google Scholar 

  17. Q. Shao, S. Jiang, Adv. Mater. 27, 15 (2015)

    CAS  PubMed  Google Scholar 

  18. C. Zhao, J. Zhao, X.S. Li, J. Wu, S.F. Chen, Q. Chen, Q.M. Wang, X. Gong, L.Y. Li, J. Zheng, Biomaterials 34, 4714 (2013)

    CAS  PubMed  Google Scholar 

  19. A.B. Lowe, C.L. McCormick, Chem. Rev. 102, 4177 (2002)

    CAS  PubMed  Google Scholar 

  20. Y. Higaki, Y. Inutsuka, T. Sakamaki, Y. Terayama, A. Takenaka, K. Higaki, N.L. Yamada, T. Moriwaki, Y. Ikemoto, A. Takahara, Langmuir 33, 8404 (2017)

    CAS  PubMed  Google Scholar 

  21. K. Klinker, M. Barz, Macromol. Rapid Commun. 36, 1943 (2015)

    CAS  PubMed  Google Scholar 

  22. Y.F. Huang, S.C. Lu, Y.C. Huang, J.S. Jan, Small 10, 1939 (2014)

    CAS  PubMed  Google Scholar 

  23. C. Deng, J. Wu, R. Cheng, F. Meng, H.-A. Klok, Z. Zhong, Prog. Polym. Sci. 39, 330 (2014)

    CAS  Google Scholar 

  24. G.J.M. Habraken, A. Heise, P.D. Thornton, Macromol. Rapid Commun. 33, 272 (2011)

    Google Scholar 

  25. B.-Y. Chen, Y.-F. Huang, Y.-C. Huang, T.-C. Wen, J.-S. Jan, ACS Macro Lett. 3, 220 (2014)

    CAS  PubMed  Google Scholar 

  26. R.P. Brinkhuis, F.P.J.T. Rutjes, J.C.M. van Hest, Polym. Chem. 2, 1449 (2011)

    CAS  Google Scholar 

  27. H.R. Kricheldorf, Angew. Chem. Int. Ed. 45, 5752 (2006)

    CAS  Google Scholar 

  28. T. Bai, B. Zheng, J. Ling, Front. Chem. 9, 645949 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Liu, D. Li, J. Ding, X. Chen, Chin. Chem. Lett. 31, 3001 (2020)

    CAS  Google Scholar 

  30. D. Huesmann, K. Klinker, M. Barz, Polym. Chem. 8, 957 (2017)

    CAS  Google Scholar 

  31. T.J. Deming, Chem. Rev. 116, 786 (2016)

    CAS  PubMed  Google Scholar 

  32. Y. Shen, X. Fu, W. Fu, Z. Li, Chem. Soc. Rev. 44, 612 (2015)

    CAS  PubMed  Google Scholar 

  33. X. Tao, M.-H. Li, J. Ling, Eur. Polym. J. 109, 26 (2018)

    CAS  Google Scholar 

  34. D. Siefker, A.Z. Williams, G.G. Stanley, D. Zhang, ACS Macro Lett. 7, 1272 (2018)

    CAS  Google Scholar 

  35. I. Yakovlev, T.J. Deming, J. Am. Chem. Soc. 137, 4078 (2015)

    CAS  PubMed  Google Scholar 

  36. J. Ladd, Z. Zhang, S. Chen, J.C. Hower, S. Jiang, Biomacromol 9, 1357 (2008)

    CAS  Google Scholar 

  37. W. Yang, H. Xue, W. Li, J. Zhang, S. Jiang, Langmuir 25, 11911 (2009)

    CAS  PubMed  Google Scholar 

  38. S. Hladysh, D. Oleshchuk, J. Dvořáková, A. Golunova, P. Šálek, J. Pánek, O. Janoušková, D. Kaňková, E. Pavlova, V. Proks, Eur. Polym. J. 148, 110347 (2021)

    CAS  Google Scholar 

  39. S. Hladysh, D. Oleshchuk, J. Dvořáková, I. Šeděnková, M. Filipová, Z. Pobořilová, J. Pánek, V. Proks, J. Appl. Polym. Sci. 139, 52099 (2022)

    CAS  Google Scholar 

  40. J. Dvořáková, P. Šálek, L. Korecká, E. Pavlova, P. Černoch, O. Janoušková, B. Koutníková, V. Proks, J. Appl. Polym. Sci. 137, 48725 (2020)

    Google Scholar 

  41. J. Dvořáková, J. Trousil, B. Podhorská, Z. Mikšovská, O. Janoušková, V. Proks, Biomacromol 22, 1417 (2021)

    Google Scholar 

  42. J.M. Wang, H. Sun, J.J. Li, D.Y. Dong, Y.B. Zhang, F.L. Yao, Carbohydr. Polym. 117, 384 (2015)

    CAS  PubMed  Google Scholar 

  43. X. Wang, G. Wu, C. Lu, Y. Wang, Y. Fan, H. Gao, J. Ma, Colloids Surf. B 46, 237 (2011)

    Google Scholar 

  44. S. Colak, G.N. Tew, Langmuir 28, 666 (2012)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Czech Science Foundation (Project No. 21-06524S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sviatoslav Hladysh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3581 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hladysh, S., Dvořáková, J. & Proks, V. Synthesis and anti-fouling properties of zwitterionic poly(l-glutamic acid). Macromol. Res. 31, 593–601 (2023). https://doi.org/10.1007/s13233-023-00145-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00145-6

Keywords

Navigation