

Effects of low-molecular weight additives and aging on rheological properties of chitosan / CN slurries

Jana Mikešová^a, Jindřich Hašek^a, Galina Tishchenko^a, Pierfrancesco Morganti^b

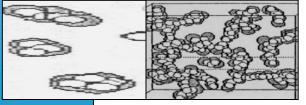
^aInstitute of Macromolecular Chemistry AS CR, v. v. i., Prague 6, 162 06, Czech Republic ^bMavi Sud Srl, Aprilia, 04011, Italy

n - Chitopack workshop, 17 October 2014, Prague

Content

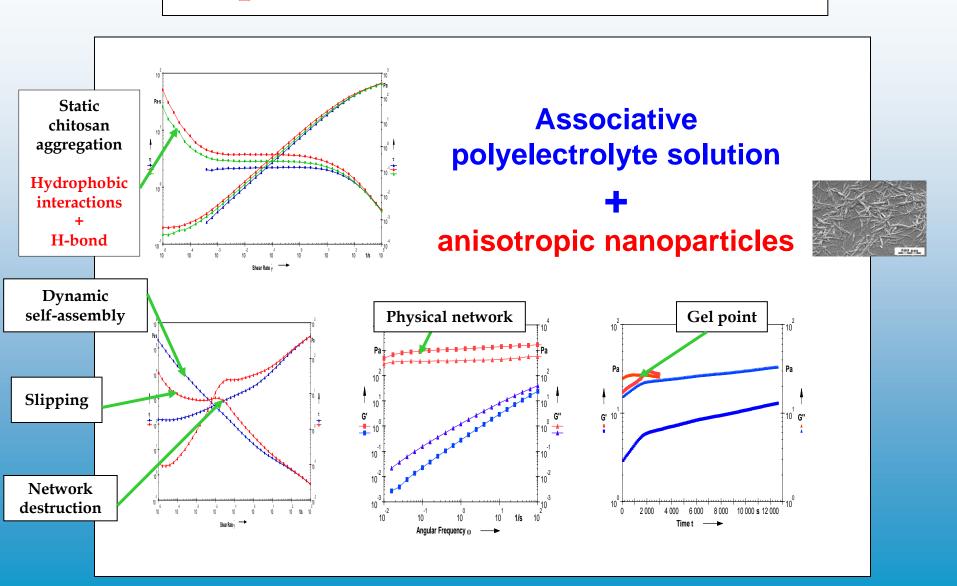
- Chitosan /chitin nanofibrils (CN) slurry
 Solid-like and rubber-like behaviour
 CN = strong "gelling agent"
- 2. Effects of bioplasticizers (glycerol, PEG)
 Delay in the beginning of gelation
- 3. Effects of metal ions (Ca²⁺, Mg²⁺, Ba²⁺)
 Ba²⁺ positive influence on gelation
- 4. Effects of aging

 Decrease in elasticity


Parts 1 and 2: Carbohydrate Polymers 112, 753-757 (2014)

? Why rheology?

- 1. Processing of chitosan / CN films
 Transport, mixing (shear rate analysis)
 casting, spraying (yield stress, thixotropy)
 stability, structural recovery (time effects)
- 2. Relation to microstructure
 Rate of self-assembly, strength of physical networks


Structure ←→ rheology ←→ utility properties mechanical

barrier thermal

Properties of chitosan / CN slurries

Aim of the study

- (1) Investigate effects of bioplasticizers and metal ions (Ca²⁺, Mg²⁺, Ba²⁺) on rheological properties of chitosan/CN slurries.
- (2) Observe changes in rheological characteristics of chitosan/CN/glycerol slurry during long-time aging.

Materials

Chitosans:

- a) Giusto Faravalli S.p.A., Italy, $M_w = 1425 \text{ kDa}$, DA = 20 %
- b) HMC+GmbH, Germany, $M_w = 374$ kDa, DA = 11 %

Chitin nanofibrils: (Mavi Sud Srl, Italy), degree of acetylation (DA) = 90 %

Bioplasticizers:

glycerol poly(ethylene)glycol

Metal hydroxides:

 $Mg(OH)_2$, $Ca(OH)_2$, $Ba(OH)_2$

Solutions

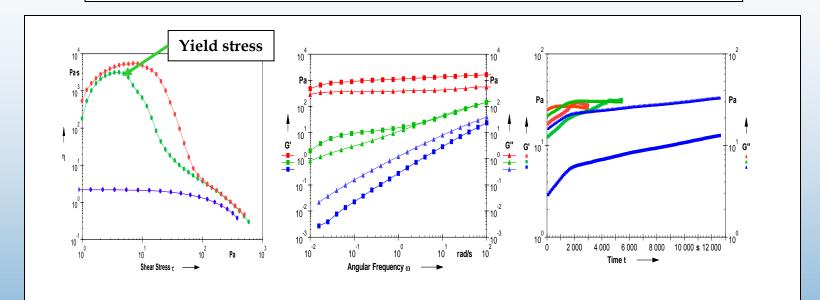
Composition:

- (a) Chitosan solution:
 - 2 wt. % chitosan solution in 2 wt. % acetic acid
- (b) Chitosan/CN solution:
 - Solution (a) + 0.8 wt. % chitin nanofibrils
- (c) Modified chitosan/CN solution:
 - 1) Solution (b) + 1 wt. % glycerol
 - 2) Solution (b) + 0.03 wt. % metal hydroxides

Preparation:

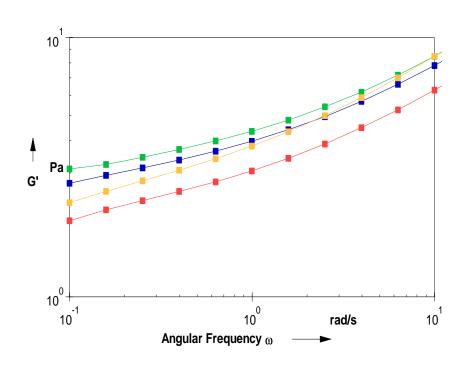
Mechanic stirring: 8 h after homogenization at room temperature

Storage: low temperature above 5 °C


Experimental

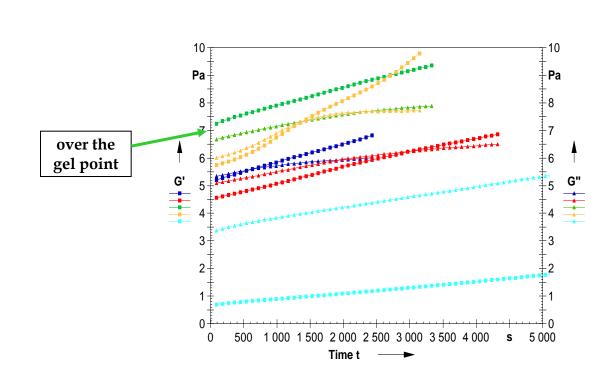
Rheometr Physica MCR 501 (Anton Paar, Austria), anti-slipping parallel plates geometry, d = 50 mm, measurements at room temperature, pre-shearing 3 s at the shear rate 0.01 s⁻¹

- (1) Steady shear flow stress controlled experiments yield stress limits
- (2) Small-amplitude oscillatory shear linear viscoelastic region confirmed at 6.28 rad s⁻¹
- (3) Time dependent experiments in steady and oscillatory shear


Effects of bioplasticizers (glycerol)

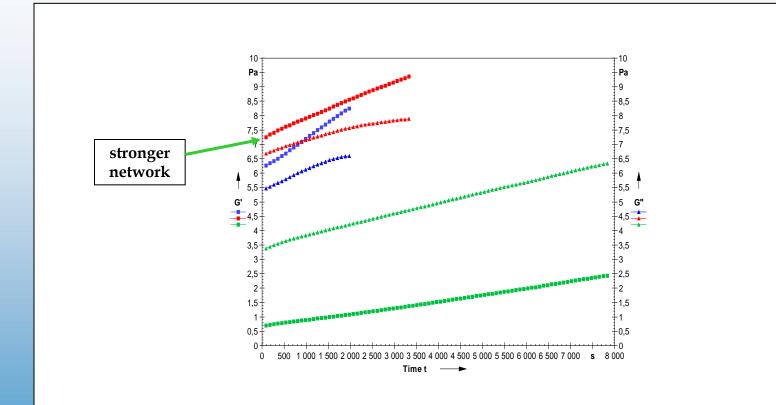
- (1) Decrease of the yield stress destruction of the physical network at a lower stress.
- (2) Rubber-like behaviour in the low frequency region only.
- (3) Delay in the beginning of gelation.

Effects of metal ions on elasticity of slurries

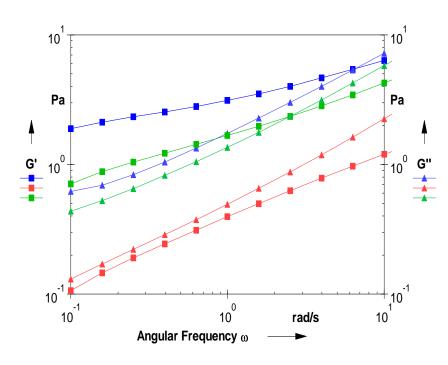


Storage modulus vs. angular frequency;

Slurry without metal ions, with Ca2+, Mg2+, Ba2+ ions.


Effects of metal ions on gelation

Storage modulus (■)and loss modulus (▲) vs. time; Chitosan/CN, chitosan/CN/ Ca²⁺, chitosan/CN/Mg²⁺, chitosan/CN/Ba²⁺, chitosan/Ba²⁺(CN absence).


Effect of Ba²⁺ concentration on gel elasticity

Storage modulus (■)and loss modulus (▲) vs. time; chitosan/CN/Ba²⁺ (0.03 wt. %), chitosan/CN/Ba²⁺ (0.01 wt. %) chitosan/Ba²⁺.

Aging during storage

Chitosan /CN/ glycerol slurry - decrease in elasticity

Storage modulus (■) and loss modulus (▲) vs. frequency; 1 day, 6 weeks, 19 weeks of storage

Conclusions

- (1) Addition of bioplasticizers to chitosan/CN solutions resulted in the prolongation of self-assembly process in slurries and in the decrease in yield stress.
- (2) Presence of Mg²⁺ ions in slurries prolonged and Ba²⁺ ions propagated gelation; effect of Ca²⁺ was not significant.
- (2) Elasticity of chitosan/CN/glycerol slurry decreased and solid-like behaviour disappeared during long-time storage. The gelation of the slurry was decimated due to a scission of chitosan chains.

Announcement

The authors gratefully acknowledge the financial support of the European Union through the grant No. 315233.

Thank you for your attention!